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Distributed pumped dipole systems do not admit true Bose 
condensations 

C J S Clarke 
Faculty of Mathematical Studies, Universily of Southampton. Southampton SO9 SNH, UK 

Received 18 February 1994 

Abstract. Biological interest attaches 10 system of coupled electric dipoles with pumping 
applied to the phonon modes. In certain cases b o w ”  as Fr6hlich systems the master equation 
for pumped phonon models in general is known to admit Bose condensations. It is shown. in 
contrast, that for the biological systems of interest a Bose condensation does not occur (though 
this daes not rule out a generalized condensation), 

1. General setting 

Considerable interest in theoretical biology has been focussed on non-equilibrium systems 
of coupled oscillators which are claimed to form Bose condensations and so offer the 
possibility of establishing long-range quantum coherence at room temperature. It has been 
postulated that this mechanism could form the basis for consciousness (Marshall 1989) or 
could even constitute a ‘second nervous system’ mowlands 1983). 

The basic mathematical model is as follows. We consider a heat bath B (the general 
cellular environment), a system S consisting of oscillators with frequencies WO, . . . , WN 

(identified with the normal modes of a system of electrically coupled polar molecules such as 
membrane proteins), and a source of energy (or ‘pump’) P coupled to the system (identified 
with, for example, the membrane energy transfer mechanisms involved in the propagation 
of a nervous action potential). 

A number of authors (Frohlich 1968, Sewell 1986) have proposed for this system the 
master equation 

irk L S& - ak(nk - e-Wbfl(nk + 1)) - x b i t ( n n ( n i  + I) - e(W,-wh)p ni(nt + 1)) (1) 
i 

where nk is the expectation value of the number operator for the kth mode of the system, 
wk is its frequency, B is the inverse temperature, s& represents the rate of pumping to the 
mode, ak represents the coupling to the heat bath and bin the coupling between different 
(first-order) modes due to nonlinearities in the classical Hamiltonian. This equation has been 
derived using conventional approximations by Wu and Austin (1978). The case of a Fmlich 
system has been discussed rigorously by Duflield (1988b), who shows that the continuum 
limit of this equation can be derived exactly. The formation of Bose condensations in the 
master equation has been demonstrated in special cases by Sewell (19861, Frohlich (1968) 
and Duflield (1988a). 

The concept of a Bose condensation is related to the limiting form of the equilibrium 
solution to the master equation in the limit as the number of modes becomes infinite. Thus 
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we are in effect dealing with a sequence of systems, parametrized by N, the total number 
of modes. We suppose that there exists a smooth dena'cy function p ( o )  such that 

) -+ [p(w)dw 
1 -( N between hwl and hoz 

number of modes with energies 

as N -+ W. We write d o  for p ( o )  do,  noting that a large part of what follows will also 
be valid in the case where dw is a general measure. We write hwo and hwl for the limiting 
values of the lowest and highest energies and suppose also that, for miH -+ U,  miN -+ 0' 

Nbi,j, + b' (d ,  0 )  

ain -+ (k) 
six + do) 

where b', a ,  s are smooth functions. 
A sequence of systems at some inverse temperature p will then be said ta have an 

uncondensed state if the equilibrium solution tends to a smooth function n;  i.e. ni,, + n(o)  
in the above notation, for all iN tending to some w. A Bose condensation, on the other 
hand, is said to occur if as N + 00 

n o / N  -+ i o  (26) 

a non-zem limit, while 

[ n(o) do < W. (2c) 

If there is neither an uncondensed state nor a Bose condensation we shall refer to the 
situation as a generalized condensation (following Girardeau 1960, see also van den Berg 
er ai 1986). 

2. Condition for a condensation 

First, we examine the necessary conditions for a Bose Condensation actually occurring. The 
result derived (equation (8) below) is well known, but the proof does not seem to have 
appeared in print before. We suppose the existence of a Bose condensation, as specified by 
(a), (2c). 

Setting k = 0 in (1). defining bik = Nbit and equating i o  to 0 gives 

1 
0 = SO + aoeCm@ + - bioe("-WO'Bni + noaa(e-mp - 1) 

N i>O 

As N -+ 00 the first three terms tend to limits, by assumption (cf (2)). Thus dividing (3) 
by N and taking this limit eliminates these terms, leaving 

W I  

b'(@, w)n(o)(l - e(w-WO)B)do - b'(@, w)do) . 
(4) 
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Defining 

b(o,  0') = b'(o, o')ew'a 
k(w)  = s(o) + a(o)e-@ 

u(w) = b(w,  w')e-"' d" + a(w)(l - e-"B) L 
we write this as 

[ b(wo, o')n(o')(e-8" - eCSw) do' + U(@) = 0. (5 )  

Now take the continuum limit (2a) in the master equation (1) for equilibrium, namely 
i~ = 0, and solve for n(w) as 

k(w) + 1: b(o, o')n(o')do'e-~u f b(o, oo)rioe-FW 
n(o) = (6) 1: b(o, o')n(o')(e-fl"' - e-@') do' + b(o, @)io(e-Bw - ,-aw) + U(@)' 

Subtracting the left-hand side of (5) from the denominator of (6) gives 

U(@) - U(@) + [ n(o ' ) [b (W,  @')(e-@- -e+") - b(o,o')(e-a" - e-#")] do' 

+ b ( o ,  q)rio(e-pw -e-@) (7) 

whose modulus is easily seen to be bounded above by K(o - 00) for some K. The 
numerator of (6) is clearly positive, and so for convergence of 1: n(o)  dw we require 

do 
< C O  

the usual result in Bose condensations, as is stressed by, for example, Blatt (1964) and 
assumed by both Sewell (1986) and Frohlich (1968). 

3. Biological models 

We now move on to show that the above condition is in fact not fulfilled for the systems 
of interest in biology, so that at best there is a generalized condensation rather than a true 
Bose condensation. 

We consider for simplicity a system consisting of a threedimensional distribution of 
polarizable dipoles, each thought of as an elastically coupled pair of charged massive 
particles constrained to move along an axis that is fixed for each dipole. Thus one can 
introduce k (a function of position) for the direction of the dipoles, vk the polarization per 
unit volume, Q the oscillation frequency of an isolated dipole, and LQ the volume polarization 
that would be produced if all the dipoles were in the equilibrium state for an isolated dipole. 
Then the oscillator equation for a single dipole, in the harmonic approximation (neglecting 
for the time being nonlinear terms, though these will be crucial for the Frohlich mechanism) 
is 

d2v - = Q * [ p k .  E - (U - uo)] 
dtz 
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where p is a constant related to the dielectric constant. The electric field E is given by 

E = Eo + E1 + E 2  

V * E ~ = - ( k . V ) V  
& = yv l  

in which Eo is the externally imposed field, El i s  the field due to the averaged effect of the 
dipoles some distance from the source, and E2 is a correction-field to take account of near 
neighbours. 2 is a fixed vector field determined by the geometry of the local distribution of 
the dipoles. (For details of the theory here, see Burfoot 1967.) 

The equations are linear and so we can subtract off the static equilibrium solution for 
a given external Eo. If a ’ denotes the difference between a quantity and its equilibrium 
value, and we put E; = -VI$, then 

- 0’6 = - ( k  . V)V’ (10) 

If we Fourier analyse with respect to time t and take the mode with frequency w ,  
retaining the same letters for the Fourier mode amplitudes, then from (9) 

so that (10) gives 

V’I$ = A ( k .  V)’@ 

with 

A = S ~ ’ ~ / ( U J ~ - Q ’ ( I  - p y k . Z ) ) .  (11) 

Passing to a spatial Fourier analysis and taking the component proportional to exp(i(lx + 
my + nz)) gives, in the special case where all the parameters are spatially constant and k 
is along the z-axis, 

I’ +ml = n2(A - 1). (12) 

If the dipoles are arranged on sheets, which is the situation we have in mind for representing 
layers of membranes in living matter, then we would expect y to be negative: the condition 
that A > 1 (from the last equation) then gives a range of possible values of w with a ground 
state at A = +cc having a frequency 

w=Q(l  - y p k * Z ) 1 ’ 2  

and an upper limit at A = 1 with frequency 

= S 2 ( l + p [ l - y k . Z ] ) 1 ’ 2  
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To evaluate the density of modes as a function of o, we impose a cut-off at a high 
wavenumber, so that 

kZ + 1’ + nz < KZ (13) 

(the value of K being determined by the point at which the continuum model breaks down) 
together with periodic box boundary conditions requiring 1 ,  m and n to be integer multiples 
of small constants. The form of the density is insensitive to the details of the cut-off. The 
number of modes dN with frequencies between w and w + do is then proportional to the 
volume of (1,  m,  n)-space between the surfaces defined by (12) with A and A + dA given 
by ( l l ) ,  and bounded by (13). This is easily evaluated to be 

We see immediately that, in sharp contrast to the usual situation for superfluidity or 
superconductivity, the density of modes does not go to zero as the ground state is approached, 
but in fact diverges to infinity! In other words, the necessary condition (8) is not fulfilled. 
The basic reason for the breakdown is the shifting of the ground state to a high frequency, 
so that the o3 factor for the volume of wavenumber space in three dimensions (which is 
responsible for the validity of (8) for superconductivity) no longer helps to reduce the state 
density to zero near the ground state. It is very likely, therefore, that equation (8) will not 
hold for more realistic models, incorporating, for example, quadrupole layers reflecting the 
actual double-layer structure of lipid membranes. 

4. Conclusions 

We have shown that for the systems considered in biology one cannot assume the Frohlich 
mechanism for a Bose condensation. It is still possible that for large pumping rates there 
is a generalized condensation. in which the ground state does not dominate. This is borne 
out by simulations, which suggest that there is almost invariably a clustering of the energy 
in a group of low-energy states. The exact nature of this will depend on the particular 
parameters of the model. 

The imptications for theories of consciousness (Marshall 1989) are particularly severe, 
since these have depended on the qualitative difference between a Bose condensation and 
an ordinary distribution of states; a generalized condensation, on the other hand, differs only 
in degree from an ordinary distribution. Again, only a detailed estimate of the numerical 
size of the effect will determine whether this distinction really matters. 

I am grateful to the referees of an earlier version of this paper for pointing out many 
errors and drawing my attention to the work of Duffield and Girardeau. 
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